

Christoph Steiner, Julia Gaskin, Keith Harris and K.C. Das

Nitrogen Immobilization who gets the N?

C:N ratio < 20

= mineralization exceeds immobilization Net gain of NH₄⁺ and NO₃⁻

C:N ratio 20 – 30

= Neither gain or loss

C:N ratio > 30

= Immobilization exceeds mineralization Net uptake of NH₄⁺ and NO₃⁻

Biochar Carbon N immobilization?

Lehmann et al. (2002) and Asai et al. (2009) attributed reduced N uptake to N immobilization caused by the high C/N ratio of biochar

Wardle et al. (2008) reports a net N gain through immobilization

Corn stover biochar

Maximum carbonization temperature 400°C for 0.5h with N₂ carrier gas

Pyrolysis products: 33% biochar

39% bio-oil

27% non-condensable gases

Carbonized vs. un-carbonized crop residues

Tifton loamy sand (Plinthic Acrisols)

Top soil 0-0.2 m: low C content

prior sampling fertilized

223 kg ha⁻¹ 9-10-10 NPK

Screened 4mm

Treatment preparation

Soil crop residues (CR) and carbonized CR (CRc) were mixed to increase the SOC content by 0.5, 1 and 2%

- 1) CR 0.5% 32.9 Mg ha⁻¹
- 3) CRc 0.5% 22.9 Mg ha⁻¹
- 2) CR 1.0% 65.8 Mg ha⁻¹
- 4) CRc 1% 45.8 Mg ha⁻¹
- 3) CR 2.0% 131.6 Mg ha⁻¹
- 5) CRc 2% 91.6 Mg ha⁻¹

Characteristics of CR and CRc

	C	N	P	K	C/N
g kg ⁻¹					
CR	425.63	5.98	0.85	2.10	71.19
CRc	612.37	12.50	2.50	5.80	48.99

Greenhouse setup

- Randomized complete block design with 4 replicates
- 4 seeds of corn (Zea mays) planted and reduced to 1 (after one week)
- Fertilization: $83 \text{kg ha}^{-1} \text{ K}_2 \text{SO}_4$ (37.2 kg ha⁻¹ K and 15.3 kg ha⁻¹ S) Nitrogen at 40, 80, and 160 kg ha⁻¹ as NH₄NO₃ Micronutrients (Scotts) 13 kg ha⁻¹

3 levels of C from two different sources and 3 levels of N

Results plant growth

Results plant growth and chlorophyll concentration (SPAD-value)

Results biomass at harvest 7 weeks (at tasseling stage)

Results biomass at harvest 7 weeks (at tasseling stage, Block A)

Results aboveground biomass vs. belowground biomass

CRc regression

CR regression

Results biomass at harvest 7 weeks (at tasseling stage, Block A)

